STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ppaInorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (171 aa)    
Predicted Functional Partners:
EJF07443.1
PFAM: ATP synthase delta (OSCP) subunit.
   
 
 0.941
atpA
Proton translocating ATP synthase, F1 alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
   
 
 0.930
atpF
F0F1-type ATP synthase, beta subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
   
 
 0.927
EJF07445.1
F0F1-type ATP synthase, beta subunit; PFAM: ATP synthase B/B' CF(0); Belongs to the ATPase B chain family.
   
 
 0.927
atpE
ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
 
 0.918
atpG
ATP synthase, F1 gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
   
 
 0.910
efp
Translation elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.
   
  
 0.899
atpD
ATP synthase, F1 beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
   
 
 0.893
atpB
F0F1-type ATP synthase, alpha subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
   
 
 0.880
atpC
ATP synthase, F1 epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane.
   
 
  0.863
Your Current Organism:
Thiovulum sp. ES
NCBI taxonomy Id: 1177931
Other names: T. sp. ES
Server load: low (18%) [HD]