STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpHATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (185 aa)    
Predicted Functional Partners:
atpG
ATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
 
 0.999
atpF
ATP synthase F0, B subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
  
 0.999
atpA
ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
 
 0.999
atpB
ATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
 
 0.999
atpE
ATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpG-2
ATP synthase B/B' CF(0) superfamily; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0). The b'-subunit is a diverged and duplicated form of b found in plants and photosynthetic bacteria. Belongs to the ATPase B chain family.
 
 0.999
EDX75866.1
ATP synthase ab C terminal domain protein; [C] COG0055 F0F1-type ATP synthase, beta subunit.
 
 0.999
EDX74870.1
[C] COG1894 NADH:ubiquinone oxidoreductase, NADH-binding (51 kD) subunit.
   
 
 0.990
EDX74562.1
Hypothetical protein; [K] COG5665 CCR4-NOT transcriptional regulation complex, NOT5 subunit.
    
 0.934
ppa
Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions.
   
 
 0.915
Your Current Organism:
Coleofasciculus chthonoplastes
NCBI taxonomy Id: 118168
Other names: C. chthonoplastes PCC 7420, Coleofasciculus chthonoplastes PCC 7420, Microcoleus chthonoplastes PCC 7420, Microcoleus sp. PCC 7420
Server load: low (22%) [HD]