node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
EKE97463.1 | EKE97464.1 | FDUTEX481_04839 | FDUTEX481_04840 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | 0.999 |
EKE97463.1 | EKE99675.1 | FDUTEX481_04839 | FDUTEX481_09551 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | NADH-ubiquinone/plastoquinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 6 family. | 0.998 |
EKE97463.1 | EKF02096.1 | FDUTEX481_04839 | FDUTEX481_07349 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | KEGG: ana:alr0762 1.0e-117 hoxU; bidirectional hydrogenase complex protein HoxU; K05588 diaphorase subunit of the bidirectional hydrogenase; Psort location: Cytoplasmic, score: 9.97. | 0.999 |
EKE97463.1 | ndhA | FDUTEX481_04839 | FDUTEX481_09553 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | 0.999 |
EKE97463.1 | ndhB | FDUTEX481_04839 | FDUTEX481_09091 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | Proton-translocating NADH-quinone oxidoreductase, chain; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
EKE97463.1 | ndhC | FDUTEX481_04839 | FDUTEX481_03385 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
EKE97463.1 | ndhE | FDUTEX481_04839 | FDUTEX481_09550 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | NADH dehydrogenase subunit K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.998 |
EKE97463.1 | ndhH | FDUTEX481_04839 | FDUTEX481_00312 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | NAD(P)H-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
EKE97463.1 | ndhJ | FDUTEX481_04839 | FDUTEX481_03387 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | NADH dehydrogenase, subunit C; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
EKE97463.1 | ndhK | FDUTEX481_04839 | FDUTEX481_03386 | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | 0.999 |
EKE97464.1 | EKE97463.1 | FDUTEX481_04840 | FDUTEX481_04839 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | Protein HymB; KEGG: ava:Ava_4654 4.7e-232 respiratory-chain NADH dehydrogenase domain-containing protein K05587; Psort location: Cytoplasmic, score: 9.12. | 0.999 |
EKE97464.1 | EKE99675.1 | FDUTEX481_04840 | FDUTEX481_09551 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | NADH-ubiquinone/plastoquinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 6 family. | 0.989 |
EKE97464.1 | EKF02096.1 | FDUTEX481_04840 | FDUTEX481_07349 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | KEGG: ana:alr0762 1.0e-117 hoxU; bidirectional hydrogenase complex protein HoxU; K05588 diaphorase subunit of the bidirectional hydrogenase; Psort location: Cytoplasmic, score: 9.97. | 0.999 |
EKE97464.1 | ndhA | FDUTEX481_04840 | FDUTEX481_09553 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | 0.997 |
EKE97464.1 | ndhB | FDUTEX481_04840 | FDUTEX481_09091 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | Proton-translocating NADH-quinone oxidoreductase, chain; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.993 |
EKE97464.1 | ndhC | FDUTEX481_04840 | FDUTEX481_03385 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.996 |
EKE97464.1 | ndhE | FDUTEX481_04840 | FDUTEX481_09550 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | NADH dehydrogenase subunit K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.991 |
EKE97464.1 | ndhH | FDUTEX481_04840 | FDUTEX481_00312 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | NAD(P)H-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.995 |
EKE97464.1 | ndhJ | FDUTEX481_04840 | FDUTEX481_03387 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | NADH dehydrogenase, subunit C; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.995 |
EKE97464.1 | ndhK | FDUTEX481_04840 | FDUTEX481_03386 | H(+)-transporting two-sector protein; KEGG: ava:Ava_4653 1.4e-65 bidirectional hydrogenase complex protein HoxE K05586; Psort location: Cytoplasmic, score: 9.26. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | 0.995 |