node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
APY04_0686 | APY04_3137 | APY04_0686 | APY04_3137 | Sensor histidine kinase in cluster with mercury reductase. | Hypothetical protein. | 0.713 |
APY04_0686 | yacG | APY04_0686 | APY04_2898 | Sensor histidine kinase in cluster with mercury reductase. | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | 0.458 |
APY04_2897 | yacG | APY04_2897 | APY04_2898 | Septum formation protein Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | 0.736 |
APY04_3137 | APY04_0686 | APY04_3137 | APY04_0686 | Hypothetical protein. | Sensor histidine kinase in cluster with mercury reductase. | 0.713 |
APY04_3137 | yacG | APY04_3137 | APY04_2898 | Hypothetical protein. | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | 0.424 |
gyrA | gyrB | APY04_0400 | APY04_0584 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.995 |
gyrA | parE | APY04_0400 | APY04_0954 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Topoisomerase IV subunit B; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase family. ParE type 1 subfamily. | 0.996 |
gyrA | yacG | APY04_0400 | APY04_2898 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | 0.853 |
gyrB | gyrA | APY04_0584 | APY04_0400 | DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.995 |
gyrB | parC | APY04_0584 | APY04_1534 | DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Topoisomerase IV subunit A; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. | 0.995 |
gyrB | yacG | APY04_0584 | APY04_2898 | DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | 0.862 |
parC | gyrB | APY04_1534 | APY04_0584 | Topoisomerase IV subunit A; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. | DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.995 |
parC | parE | APY04_1534 | APY04_0954 | Topoisomerase IV subunit A; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. | Topoisomerase IV subunit B; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase family. ParE type 1 subfamily. | 0.997 |
parC | yacG | APY04_1534 | APY04_2898 | Topoisomerase IV subunit A; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | 0.853 |
parE | gyrA | APY04_0954 | APY04_0400 | Topoisomerase IV subunit B; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase family. ParE type 1 subfamily. | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.996 |
parE | parC | APY04_0954 | APY04_1534 | Topoisomerase IV subunit B; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase family. ParE type 1 subfamily. | Topoisomerase IV subunit A; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. | 0.997 |
parE | yacG | APY04_0954 | APY04_2898 | Topoisomerase IV subunit B; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase family. ParE type 1 subfamily. | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | 0.862 |
yacG | APY04_0686 | APY04_2898 | APY04_0686 | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | Sensor histidine kinase in cluster with mercury reductase. | 0.458 |
yacG | APY04_2897 | APY04_2898 | APY04_2897 | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | Septum formation protein Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. | 0.736 |
yacG | APY04_3137 | APY04_2898 | APY04_3137 | Hypothetical protein; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. | Hypothetical protein. | 0.424 |