STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pdxJPyridoxine 5'-phosphate synthase; Catalyzes the complicated ring closure reaction between the two acyclic compounds 1-deoxy-D-xylulose-5-phosphate (DXP) and 3-amino- 2-oxopropyl phosphate (1-amino-acetone-3-phosphate or AAP) to form pyridoxine 5'-phosphate (PNP) and inorganic phosphate. (248 aa)    
Predicted Functional Partners:
pdxH
Pyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP).
  
  
 0.938
pdxA
4-hydroxythreonine-4-phosphate dehydrogenase; Catalyzes the NAD(P)-dependent oxidation of 4-(phosphooxy)-L- threonine (HTP) into 2-amino-3-oxo-4-(phosphooxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP).
 
 
 0.930
ALV26971.1
Pyridoxamine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyridoxine kinase family.
     
 0.905
era
GTPase Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism.
    
 0.800
ribB
3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family.
     
 0.691
recO
DNA repair protein RecO; Involved in DNA repair and RecF pathway recombination.
     
 0.653
acpS
4'-phosphopantetheinyl transferase; Transfers the 4'-phosphopantetheine moiety from coenzyme A to a Ser of acyl-carrier-protein; Belongs to the P-Pant transferase superfamily. AcpS family.
  
  
 0.622
dxs
1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily.
     
 0.604
guaA
GMP synthetase; Catalyzes the synthesis of GMP from XMP.
 
   
 0.595
coaD
Phosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family.
  
   
 0.586
Your Current Organism:
Pannonibacter phragmitetus
NCBI taxonomy Id: 121719
Other names: Achromobacter group B, Achromobacter group E, Achromobacter sp. LMG 5410, Achromobacter sp. LMG 5411, Achromobacter sp. LMG 5430, Achromobacter sp. LMG 5431, DSM 14782, LMG 22736, LMG:22736, NCAIM B02025, NCTC 13350, P. phragmitetus, Pannonibacter phragmitetus Borsodi et al. 2003, alpha proteobacterium C6-19, alpha proteobacterium C6/17, alpha proteobacterium C6/8, strain C6/19
Server load: low (16%) [HD]