node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KOY69580.1 | KOY69584.1 | RZ74_02960 | RZ74_03000 | S4 domain protein. | Hypoxanthine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. | 0.431 |
KOY69580.1 | ftsH | RZ74_02960 | RZ74_03010 | S4 domain protein. | ATP-dependent zinc metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. | 0.414 |
KOY69580.1 | grpE | RZ74_02960 | RZ74_07510 | S4 domain protein. | Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent i [...] | 0.470 |
KOY69580.1 | hsp33 | RZ74_02960 | RZ74_03020 | S4 domain protein. | 33 kDa chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.746 |
KOY69580.1 | tilS | RZ74_02960 | RZ74_02990 | S4 domain protein. | Hypothetical protein; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. | 0.594 |
KOY69584.1 | KOY69580.1 | RZ74_03000 | RZ74_02960 | Hypoxanthine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. | S4 domain protein. | 0.431 |
KOY69584.1 | KOY69587.1 | RZ74_03000 | RZ74_03030 | Hypoxanthine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. | tRNA-dihydrouridine synthase; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the dus family. | 0.459 |
KOY69584.1 | ftsH | RZ74_03000 | RZ74_03010 | Hypoxanthine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. | ATP-dependent zinc metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. | 0.908 |
KOY69584.1 | hsp33 | RZ74_03000 | RZ74_03020 | Hypoxanthine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. | 33 kDa chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.560 |
KOY69584.1 | tilS | RZ74_03000 | RZ74_02990 | Hypoxanthine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. | Hypothetical protein; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. | 0.999 |
KOY69587.1 | KOY69584.1 | RZ74_03030 | RZ74_03000 | tRNA-dihydrouridine synthase; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the dus family. | Hypoxanthine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. | 0.459 |
KOY69587.1 | ftsH | RZ74_03030 | RZ74_03010 | tRNA-dihydrouridine synthase; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the dus family. | ATP-dependent zinc metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. | 0.709 |
KOY69587.1 | hsp33 | RZ74_03030 | RZ74_03020 | tRNA-dihydrouridine synthase; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the dus family. | 33 kDa chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.791 |
KOY69587.1 | lysS | RZ74_03030 | RZ74_03040 | tRNA-dihydrouridine synthase; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the dus family. | Lysine--tRNA ligase; Belongs to the class-II aminoacyl-tRNA synthetase family. | 0.780 |
KOY69587.1 | tilS | RZ74_03030 | RZ74_02990 | tRNA-dihydrouridine synthase; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the dus family. | Hypothetical protein; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. | 0.615 |
dnaJ | dnaK | RZ74_07490 | RZ74_07500 | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] | Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.999 |
dnaJ | ftsH | RZ74_07490 | RZ74_03010 | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] | ATP-dependent zinc metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. | 0.692 |
dnaJ | groL | RZ74_07490 | RZ74_03580 | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] | 60 kDa chaperonin; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.938 |
dnaJ | grpE | RZ74_07490 | RZ74_07510 | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] | Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent i [...] | 0.998 |
dnaJ | hsp33 | RZ74_07490 | RZ74_03020 | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] | 33 kDa chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.786 |