STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
C900_00041Putative Cytochrome bd2, subunit I; Belongs to the cytochrome ubiquinol oxidase subunit 1 family. (447 aa)    
Predicted Functional Partners:
C900_00040
Cytochrome d ubiquinol oxidase subunit II.
 0.999
C900_00042
Hypothetical protein.
       0.727
panD
Aspartate 1-decarboxylase; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine.
   
  
 0.644
C900_04402
Succinate dehydrogenase flavoprotein subunit.
     
 0.639
C900_03366
Cytochrome c oxidase subunit CcoN; Belongs to the heme-copper respiratory oxidase family.
    
 0.608
C900_04404
Succinate dehydrogenase iron-sulfur protein.
     
 0.601
nuoH
NADH-ubiquinone oxidoreductase chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
     
 0.600
nuoK
NADH-ubiquinone oxidoreductase chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family.
     
 0.598
nuoA
NADH ubiquinone oxidoreductase chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
     
 0.598
nuoN
NADH-ubiquinone oxidoreductase chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
     
 0.594
Your Current Organism:
Fulvivirga imtechensis
NCBI taxonomy Id: 1237149
Other names: F. imtechensis AK7, Fulvivirga imtechensis AK7, Fulvivirga sp. AK7
Server load: low (20%) [HD]