node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AMA41895.1 | AMA42603.1 | AWJ11_05525 | AWJ11_09685 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.951 |
AMA41895.1 | AMA43454.1 | AWJ11_05525 | AWJ11_14530 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | 0.919 |
AMA41895.1 | aceF | AWJ11_05525 | AWJ11_01035 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | Pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). | 0.907 |
AMA41895.1 | gltA | AWJ11_05525 | AWJ11_02015 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. | 0.937 |
AMA41895.1 | prpB | AWJ11_05525 | AWJ11_05755 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | 2-methylisocitrate lyase; Catalyzes the thermodynamically favored C-C bond cleavage of (2R,3S)-2-methylisocitrate to yield pyruvate and succinate. | 0.841 |
AMA41895.1 | sdhB | AWJ11_05525 | AWJ11_02035 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.404 |
AMA41895.1 | sucC | AWJ11_05525 | AWJ11_02050 | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | succinate--CoA ligase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. | 0.832 |
AMA42603.1 | AMA41895.1 | AWJ11_09685 | AWJ11_05525 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | 0.951 |
AMA42603.1 | AMA42691.1 | AWJ11_09685 | AWJ11_10185 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.411 |
AMA42603.1 | AMA43180.1 | AWJ11_09685 | AWJ11_13015 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. | 0.485 |
AMA42603.1 | AMA43454.1 | AWJ11_09685 | AWJ11_14530 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. | 0.951 |
AMA42603.1 | aceF | AWJ11_09685 | AWJ11_01035 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). | 0.918 |
AMA42603.1 | gltA | AWJ11_09685 | AWJ11_02015 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. | 0.989 |
AMA42603.1 | mdh | AWJ11_09685 | AWJ11_04415 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family. | 0.456 |
AMA42603.1 | prpB | AWJ11_09685 | AWJ11_05755 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 2-methylisocitrate lyase; Catalyzes the thermodynamically favored C-C bond cleavage of (2R,3S)-2-methylisocitrate to yield pyruvate and succinate. | 0.936 |
AMA42603.1 | sdhB | AWJ11_09685 | AWJ11_02035 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.442 |
AMA42603.1 | sucC | AWJ11_09685 | AWJ11_02050 | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | succinate--CoA ligase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. | 0.876 |
AMA42691.1 | AMA42603.1 | AWJ11_10185 | AWJ11_09685 | Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Acetyl-coenzyme A synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.411 |
AMA42691.1 | AMA43180.1 | AWJ11_10185 | AWJ11_13015 | Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. | 0.992 |
AMA42691.1 | aceF | AWJ11_10185 | AWJ11_01035 | Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). | 0.465 |