STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OEY93689.1Cystathionine beta-lyase; Catalyzes the formation of L-homocysteine from cystathionine; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa)    
Predicted Functional Partners:
metH
Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
  
 
 0.978
cysK
Cysteine synthase A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family.
 
 0.976
OEY93694.1
5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the formation of tetrahydropteroyl-L-glutamate and methionine from L-homocysteine and 5-methyltetrahydropteroyltri-L-glutamate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.954
OEY97122.1
Homoserine dehydrogenase; Catalyzes the formation of L-aspartate 4-semialdehyde from L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.939
metZ
O-succinylhomoserine sulfhydrylase; Catalyzes the formation of L-homocysteine from O-succinyl-L- homoserine (OSHS) and hydrogen sulfide.
  
  
 
0.939
ahcY
Adenosylhomocysteinase; May play a key role in the regulation of the intracellular concentration of adenosylhomocysteine.
  
 0.930
pepN
Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.928
ilvA
PLP-dependent threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA.
  
 
 0.928
coaBC
Phosphopantothenoylcysteine decarboxylase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family.
  
 
  0.925
thrB
Homoserine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pseudomonas-type ThrB family.
  
  
  0.925
Your Current Organism:
Acinetobacter qingfengensis
NCBI taxonomy Id: 1262585
Other names: A. qingfengensis, Acinetobacter qingfengensis Li et al. 2014, Acinetobacter sp. 2BJ-1, Acinetobacter sp. 2C-3-1, Acinetobacter sp. HF5-2, CFCC 10890, KCTC 32225, strain 2BJ1
Server load: low (26%) [HD]