STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvPGlycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (955 aa)    
Predicted Functional Partners:
gcvT
Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine.
 0.999
gcvH
Hypothetical protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 0.999
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
 
 0.998
kgd
Alpha-ketoglutarate decarboxylase; Kgd; produces succinic semialdehyde; part of alternative pathway from alpha-ketoglutarate to succinate; essential for normal growth; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.979
purD
Phosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family.
  
  
 0.970
AIF40254.1
Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family.
   
    0.962
AIF41122.1
Threonine aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.961
gltB
Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.957
lpdA
Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.940
solA
Methyltryptophan oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.931
Your Current Organism:
Dermacoccus nishinomiyaensis
NCBI taxonomy Id: 1274
Other names: ATCC 29093, CCM 2140, CCUG 33028, CIP 81.71, D. nishinomiyaensis, DSM 20448, Dermacoccus nishinomiyensis, Dermatococcus nishinomiyaensis, Dermatococcus nishinomiyensis, IEGM 393, IFO 15356, JCM 11613, LMG 14222, LMG:14222, Micrococcus nishinomiyaensis, Micrococcus nishinomyaensis, NBRC 15356, NCTC 11039
Server load: low (30%) [HD]