node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AGC42472.1 | AGC42473.1 | MYSTI_01123 | MYSTI_01124 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit L. | 0.996 |
AGC42472.1 | AGC42475.1 | MYSTI_01123 | MYSTI_01126 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
AGC42472.1 | AGC42476.1 | MYSTI_01123 | MYSTI_01127 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.997 |
AGC42472.1 | AGC42477.1 | MYSTI_01123 | MYSTI_01128 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit E. | 0.977 |
AGC42472.1 | AGC44447.1 | MYSTI_01123 | MYSTI_03133 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit G. | 0.927 |
AGC42472.1 | nuoB | MYSTI_01123 | MYSTI_03139 | NADH dehydrogenase I subunit M. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.988 |
AGC42472.1 | nuoD | MYSTI_01123 | MYSTI_03134 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.988 |
AGC42472.1 | nuoI | MYSTI_01123 | MYSTI_03131 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.988 |
AGC42472.1 | nuoK | MYSTI_01123 | MYSTI_01125 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.999 |
AGC42472.1 | nuoN | MYSTI_01123 | MYSTI_01122 | NADH dehydrogenase I subunit M. | NADH dehydrogenase I subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.999 |
AGC42473.1 | AGC42472.1 | MYSTI_01124 | MYSTI_01123 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit M. | 0.996 |
AGC42473.1 | AGC42475.1 | MYSTI_01124 | MYSTI_01126 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
AGC42473.1 | AGC42476.1 | MYSTI_01124 | MYSTI_01127 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.997 |
AGC42473.1 | AGC42477.1 | MYSTI_01124 | MYSTI_01128 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit E. | 0.967 |
AGC42473.1 | AGC44447.1 | MYSTI_01124 | MYSTI_03133 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit G. | 0.916 |
AGC42473.1 | nuoB | MYSTI_01124 | MYSTI_03139 | NADH dehydrogenase I subunit L. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.980 |
AGC42473.1 | nuoD | MYSTI_01124 | MYSTI_03134 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.980 |
AGC42473.1 | nuoI | MYSTI_01124 | MYSTI_03131 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.979 |
AGC42473.1 | nuoK | MYSTI_01124 | MYSTI_01125 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.999 |
AGC42473.1 | nuoN | MYSTI_01124 | MYSTI_01122 | NADH dehydrogenase I subunit L. | NADH dehydrogenase I subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.998 |