STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
WA1_29130Cell division protein FtsK; Derived by automated computational analysis using gene prediction method: Protein Homology. (861 aa)    
Predicted Functional Partners:
rph
Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation.
   
 0.978
rtcA
RNA 3'-phosphate cyclase; Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing.
   
  0.975
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
   
 0.965
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
    
 0.957
WA1_18510
30S ribosomal protein S1; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.949
WA1_20685
RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.941
WA1_22025
30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.941
WA1_30145
RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.941
WA1_29125
KAP family P-loop domain-containing protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.924
WA1_19860
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
   
 
 0.896
Your Current Organism:
Scytonema hofmannii
NCBI taxonomy Id: 128403
Other names: S. hofmannii PCC 7110, Scytonema hofmannii PCC 7110, Scytonema sp. ATCC 29171, Scytonema sp. PCC 7110
Server load: low (16%) [HD]