node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
H663_01870 | H663_12950 | H663_01870 | H663_12950 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.984 |
H663_01870 | H663_13390 | H663_01870 | H663_13390 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | mRNA 3'-end processing factor; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.960 |
H663_01870 | H663_17625 | H663_01870 | H663_17625 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.846 |
H663_01870 | H663_17655 | H663_01870 | H663_17655 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit M; Catalyzes the transfer of electrons from NADH to quinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.838 |
H663_01870 | nuoA | H663_01870 | H663_17595 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.842 |
H663_01870 | nuoB | H663_01870 | H663_17600 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.842 |
H663_01870 | nuoC | H663_01870 | H663_17605 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.858 |
H663_01870 | nuoD | H663_01870 | H663_17610 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.856 |
H663_01870 | nuoH | H663_01870 | H663_17630 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.842 |
H663_01870 | rpoA | H663_01870 | H663_09620 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | 0.826 |
H663_12950 | H663_01870 | H663_12950 | H663_01870 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.984 |
H663_12950 | H663_17625 | H663_12950 | H663_17625 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.999 |
H663_12950 | H663_17655 | H663_12950 | H663_17655 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit M; Catalyzes the transfer of electrons from NADH to quinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
H663_12950 | nuoA | H663_12950 | H663_17595 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.999 |
H663_12950 | nuoB | H663_12950 | H663_17600 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
H663_12950 | nuoC | H663_12950 | H663_17605 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.999 |
H663_12950 | nuoD | H663_12950 | H663_17610 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.999 |
H663_12950 | nuoH | H663_12950 | H663_17630 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.999 |
H663_13390 | H663_01870 | H663_13390 | H663_01870 | mRNA 3'-end processing factor; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.960 |
H663_13390 | rpoA | H663_13390 | H663_09620 | mRNA 3'-end processing factor; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | 0.826 |