STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hslVATP-dependent HslUV protease, peptidase subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. (175 aa)    
Predicted Functional Partners:
hslU
ATP-dependent HslUV protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
 0.999
gRPE
Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...]
  
  
 0.867
groEL
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
   
 
 0.862
groES
Chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
   
  
 0.853
xerC
Integrase/recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
  
  
 0.844
lon
ATP-dependent Lon protease; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
   
  
 0.811
lon-2
ATP-dependent Lon protease; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
   
  
 0.811
TST_1262
RNA-binding S4 domain protein.
  
    0.801
secA
Preprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family.
     
 0.794
TST_0067
Peptidase M50B family.
       0.773
Your Current Organism:
Thermosulfidibacter takaii
NCBI taxonomy Id: 1298851
Other names: T. takaii ABI70S6, Thermosulfidibacter takaii ABI70S6
Server load: low (24%) [HD]