STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CALK_1976Hypothetical protein. (83 aa)    
Predicted Functional Partners:
yidC
60 kDa inner membrane insertion protein; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins.
  
  
 0.955
secE
Preprotein translocase, SecE subunit; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation.
  
 
  0.894
rpmH
Ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family.
  
  
 0.789
serS
seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec).
  
    0.779
CALK_1975
Ribonuclease P protein component; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme.
       0.773
CALK_1470
S-adenosylmethionine-dependent methyltransferase.
  
    0.690
rho
Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template.
  
    0.684
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
    
  0.657
rplB
50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family.
   
    0.629
rplD
50S ribosomal protein L4; Forms part of the polypeptide exit tunnel.
   
    0.619
Your Current Organism:
Chitinivibrio alkaliphilus
NCBI taxonomy Id: 1313304
Other names: C. alkaliphilus ACht1, Chitinivibrio alkaliphilus ACht1, candidate division TG3 bacterium ACht1, haloalkaliphilic bacterium ACht1
Server load: low (30%) [HD]