STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
A0A1Y1Y1V4V-type proton ATPase subunit a; Essential component of the vacuolar proton pump (V-ATPase), a multimeric enzyme that catalyzes the translocation of protons across the membranes. Required for assembly and activity of the V-ATPase. (353 aa)    
Predicted Functional Partners:
A0A1Y1YNV1
V-type proton ATPase catalytic subunit A.
  
 0.994
A0A1Y1YRP3
ATPase, V1/A1 complex, subunit E.
  
 0.994
A0A1Y1WZX9
V-type proton ATPase subunit; Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. The active enzyme consists of a catalytic V1 domain attached to an integral membrane V0 proton pore complex. This subunit is a non-integral membrane component of the membrane pore domain and is required for proper assembly of the V0 sector. Might be involved in the regulated assembly of V1 subunits onto the membrane sector or alternatively may prevent the passage of protons through V0 pores; Belongs to the V-ATPase V0D/AC39 subunit family.
  
 0.979
A0A1Y1X6X3
V-type proton ATPase subunit; Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. The active enzyme consists of a catalytic V1 domain attached to an integral membrane V0 proton pore complex. This subunit is a non-integral membrane component of the membrane pore domain and is required for proper assembly of the V0 sector. Might be involved in the regulated assembly of V1 subunits onto the membrane sector or alternatively may prevent the passage of protons through V0 pores; Belongs to the V-ATPase V0D/AC39 subunit family.
  
 0.979
A0A1Y1Z273
V-type proton ATPase subunit; Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. The active enzyme consists of a catalytic V1 domain attached to an integral membrane V0 proton pore complex. This subunit is a non-integral membrane component of the membrane pore domain and is required for proper assembly of the V0 sector. Might be involved in the regulated assembly of V1 subunits onto the membrane sector or alternatively may prevent the passage of protons through V0 pores; Belongs to the V-ATPase V0D/AC39 subunit family.
  
 0.979
A0A1Y1XVQ0
Vacuolar ATP synthase subunit C; Belongs to the V-ATPase proteolipid subunit family.
  
 0.975
A0A1Y1YDD4
Uncharacterized protein; Belongs to the V-ATPase proteolipid subunit family.
  
 0.975
A0A1Y1YMX7
ATPase, V1/A1 complex, subunit D.
  
 0.975
A0A1Y1XU53
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
 0.969
A0A1Y1YCW1
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
 0.969
Your Current Organism:
Basidiobolus meristosporus
NCBI taxonomy Id: 1314790
Other names: B. meristosporus CBS 931.73, Basidiobolus meristosporus CBS 931.73
Server load: low (26%) [HD]