STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AHY14392.1Glutamine amidotransferase; Catalyzes the transfer of the ammonia group from glutamine to a new carbon-nitrogen group; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa)    
Predicted Functional Partners:
guaC
Guanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides.
  
 
 0.974
guaB
Inosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family.
  
 
 0.974
gpt
Xanthine-guanine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily.
  
 
 0.939
apt
Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis.
  
 
 0.939
AHY11893.1
Catalyzes the formation of inosine monophosphate from hypoxanthine and 5-phospho-alpha-D-ribose 1-diphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family.
  
 
 0.931
surE
Stationary phase survival protein SurE; Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs.
    
 0.929
gmk
Guanylate kinase; Essential for recycling GMP and indirectly, cGMP.
  
 
 0.926
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP.
    
 0.921
AHY11332.1
5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family.
  
  
 0.920
yjjG
dUMP phosphatase; Manganese-dependent 5'-nucleotidase; specific for 5'-UMP, 5'-dUMP, and 5'-dTMP; member of haloacid dehalogenase (HAD)-like hydrolase superfamily; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
  0.916
Your Current Organism:
Citrobacter freundii
NCBI taxonomy Id: 1333848
Other names: C. freundii CFNIH1, Citrobacter freundii CFNIH1
Server load: low (8%) [HD]