node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AKL17_1560 | AKL17_3771 | AKL17_1560 | AKL17_3771 | Nitrogen fixation protein NifU. | Putative oxidoreductase. | 0.831 |
AKL17_1560 | AKL17_4712 | AKL17_1560 | AKL17_4712 | Nitrogen fixation protein NifU. | 2,4-dienoyl-CoA reductase. | 0.473 |
AKL17_1560 | nuoD | AKL17_1560 | AKL17_2237 | Nitrogen fixation protein NifU. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.433 |
AKL17_1560 | nuoI | AKL17_1560 | AKL17_2228 | Nitrogen fixation protein NifU. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.840 |
AKL17_1763 | AKL17_3771 | AKL17_1763 | AKL17_3771 | Cytochrome P450. | Putative oxidoreductase. | 0.692 |
AKL17_1763 | AKL17_4712 | AKL17_1763 | AKL17_4712 | Cytochrome P450. | 2,4-dienoyl-CoA reductase. | 0.453 |
AKL17_2223 | AKL17_3771 | AKL17_2223 | AKL17_3771 | NADH dehydrogenase subunit M. | Putative oxidoreductase. | 0.691 |
AKL17_2223 | nuoA | AKL17_2223 | AKL17_2241 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.998 |
AKL17_2223 | nuoB | AKL17_2223 | AKL17_2240 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.998 |
AKL17_2223 | nuoC | AKL17_2223 | AKL17_2239 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.999 |
AKL17_2223 | nuoD | AKL17_2223 | AKL17_2237 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.999 |
AKL17_2223 | nuoI | AKL17_2223 | AKL17_2228 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
AKL17_3771 | AKL17_1560 | AKL17_3771 | AKL17_1560 | Putative oxidoreductase. | Nitrogen fixation protein NifU. | 0.831 |
AKL17_3771 | AKL17_1763 | AKL17_3771 | AKL17_1763 | Putative oxidoreductase. | Cytochrome P450. | 0.692 |
AKL17_3771 | AKL17_2223 | AKL17_3771 | AKL17_2223 | Putative oxidoreductase. | NADH dehydrogenase subunit M. | 0.691 |
AKL17_3771 | AKL17_3772 | AKL17_3771 | AKL17_3772 | Putative oxidoreductase. | Hypothetical protein. | 0.773 |
AKL17_3771 | AKL17_4712 | AKL17_3771 | AKL17_4712 | Putative oxidoreductase. | 2,4-dienoyl-CoA reductase. | 0.732 |
AKL17_3771 | nuoA | AKL17_3771 | AKL17_2241 | Putative oxidoreductase. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.707 |
AKL17_3771 | nuoB | AKL17_3771 | AKL17_2240 | Putative oxidoreductase. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.690 |
AKL17_3771 | nuoC | AKL17_3771 | AKL17_2239 | Putative oxidoreductase. | NADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.689 |