node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AGY91005.1 | AGY91308.1 | SPICUR_08135 | SPICUR_01445 | Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.523 |
AGY91005.1 | AGY92583.1 | SPICUR_08135 | SPICUR_08145 | Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.722 |
AGY91005.1 | cysC | SPICUR_08135 | SPICUR_08140 | Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. | Adenylylsulfate kinase; Catalyzes the synthesis of activated sulfate. | 0.736 |
AGY91005.1 | polA | SPICUR_08135 | SPICUR_09400 | Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. | Hypothetical protein; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.628 |
AGY91005.1 | uvrA | SPICUR_08135 | SPICUR_08150 | Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | 0.551 |
AGY91308.1 | AGY91005.1 | SPICUR_01445 | SPICUR_08135 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. | 0.523 |
AGY91308.1 | AGY92312.1 | SPICUR_01445 | SPICUR_06740 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | 0.547 |
AGY91308.1 | cysC | SPICUR_01445 | SPICUR_08140 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Adenylylsulfate kinase; Catalyzes the synthesis of activated sulfate. | 0.529 |
AGY91308.1 | polA | SPICUR_01445 | SPICUR_09400 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.473 |
AGY91308.1 | uvrA | SPICUR_01445 | SPICUR_08150 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | 0.547 |
AGY92312.1 | AGY91308.1 | SPICUR_06740 | SPICUR_01445 | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.547 |
AGY92312.1 | mfd | SPICUR_06740 | SPICUR_04695 | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | Hypothetical protein; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | 0.773 |
AGY92312.1 | mutL | SPICUR_06740 | SPICUR_02780 | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | Hypothetical protein; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex. | 0.424 |
AGY92312.1 | polA | SPICUR_06740 | SPICUR_09400 | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | Hypothetical protein; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.539 |
AGY92312.1 | uvrA | SPICUR_06740 | SPICUR_08150 | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | 0.908 |
AGY92312.1 | uvrB | SPICUR_06740 | SPICUR_03620 | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] | 0.982 |
AGY92312.1 | uvrC | SPICUR_06740 | SPICUR_04320 | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. | 0.713 |
AGY92583.1 | AGY91005.1 | SPICUR_08145 | SPICUR_08135 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. | 0.722 |
AGY92583.1 | cysC | SPICUR_08145 | SPICUR_08140 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Adenylylsulfate kinase; Catalyzes the synthesis of activated sulfate. | 0.810 |
AGY92583.1 | uvrA | SPICUR_08145 | SPICUR_08150 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | 0.671 |