node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
GalM4 | codY | AL014_04885 | AL014_04880 | Aldose epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | 0.833 |
GalM4 | hslU | AL014_04885 | AL014_04875 | Aldose epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.823 |
GalM4 | hslV | AL014_04885 | AL014_04870 | Aldose epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.818 |
GalM4 | xerC | AL014_04885 | AL014_04865 | Aldose epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.794 |
codY | GalM4 | AL014_04880 | AL014_04885 | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | Aldose epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.833 |
codY | gid | AL014_04880 | AL014_04860 | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | tRNA (uracil-5-)-methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | 0.421 |
codY | hslU | AL014_04880 | AL014_04875 | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | ATP-dependent protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.974 |
codY | hslV | AL014_04880 | AL014_04870 | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | ATP-dependent protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.897 |
codY | topA | AL014_04880 | AL014_04855 | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] | 0.593 |
codY | whiA | AL014_04880 | AL014_07320 | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | Sporulation regulator WhiA; Involved in cell division and chromosome segregation. | 0.442 |
codY | xerC | AL014_04880 | AL014_04865 | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | Recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.860 |
dprA | gid | AL014_04850 | AL014_04860 | DNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | tRNA (uracil-5-)-methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | 0.551 |
dprA | hslV | AL014_04850 | AL014_04870 | DNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.430 |
dprA | topA | AL014_04850 | AL014_04855 | DNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] | 0.966 |
dprA | xerC | AL014_04850 | AL014_04865 | DNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.454 |
gid | codY | AL014_04860 | AL014_04880 | tRNA (uracil-5-)-methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. | 0.421 |
gid | dprA | AL014_04860 | AL014_04850 | tRNA (uracil-5-)-methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | DNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.551 |
gid | hslU | AL014_04860 | AL014_04875 | tRNA (uracil-5-)-methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | ATP-dependent protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.570 |
gid | hslV | AL014_04860 | AL014_04870 | tRNA (uracil-5-)-methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | ATP-dependent protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.589 |
gid | topA | AL014_04860 | AL014_04855 | tRNA (uracil-5-)-methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] | 0.940 |