STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase. (503 aa)    
Predicted Functional Partners:
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
 
 0.999
purB
Adenylosuccinate lyase; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily.
  
 0.998
glyA
Serine hydroxymethyltransferase family protein; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 0.993
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine.
  
 0.992
purC
Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Belongs to the SAICAR synthetase family.
  
 0.990
purD
Phosphoribosylamine--glycine ligase; Belongs to the GARS family.
  
 0.989
KJV69108.1
cobB/CobQ-like glutamine amidotransferase domain protein.
  
 
 0.988
purL
AIR synthase related, N-terminal domain protein; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assis [...]
  
 
 0.988
purA
Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
  
 0.986
guaB
Inosine-5'-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family.
  
 
 0.985
Your Current Organism:
Neoehrlichia lotoris
NCBI taxonomy Id: 1359163
Other names: C. Neoehrlichia lotoris str. RAC413, Candidatus Neoehrlichia lotoris str. RAC413
Server load: low (30%) [HD]