STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KJB92122.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (333 aa)    
Predicted Functional Partners:
KJB94934.1
Anthranilate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
KJB93481.1
trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.999
trpE
Anthranilate synthase subunit I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentrat [...]
 
 0.991
trpC
Indole-3-glycerol-phosphate synthase; Involved in tryptophan biosynthesis; amino acid biosynthesis; converts 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate to C(1)-(3-indolyl)-glycerol 3-phosphate and carbon dioxide and water; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family.
 
 
 0.969
trpF
N-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family.
 
 
 0.968
trpB
Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine.
 
 
 0.967
trpA
Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family.
 
  
 0.945
KJB93557.1
Anthranilate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.934
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
  
 
 0.790
KJB92407.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
 
 0.729
Your Current Organism:
Skermanella aerolata
NCBI taxonomy Id: 1385368
Other names: S. aerolata KACC 11604, Skermanella aerolata 5416T-32, Skermanella aerolata DSM 18479, Skermanella aerolata KACC 11604
Server load: low (24%) [HD]