STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ctaBProtoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group; Belongs to the UbiA prenyltransferase family. Protoheme IX farnesyltransferase subfamily. (313 aa)    
Predicted Functional Partners:
KGP92047.1
Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 
 0.995
ctaA
Heme A synthase; Catalyzes the oxidation of the C8 methyl side group on heme O porphyrin ring into a formyl group; Belongs to the COX15/CtaA family. Type 1 subfamily.
 0.995
KGP92045.1
Cytochrome B oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.987
KGP92511.1
Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 
 
 0.987
KGP92046.1
Quinol oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
 
 0.981
KGP91766.1
Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.971
KGP92509.1
Cytochrome B oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.966
KGP92510.1
Quinol oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
 
 0.965
KGP91767.1
Quinol oxidase subunit 1; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.965
KGP91768.1
Quinol oxidase subunit 2; Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Subunit II transfers the electrons from a quinol to the binuclear center of the catalytic subunit I.
 
 
 0.965
Your Current Organism:
Pontibacillus chungwhensis
NCBI taxonomy Id: 1385513
Other names: P. chungwhensis BH030062, Pontibacillus chungwhensis BH030062
Server load: low (26%) [HD]