STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKU95814.1Isoflavone reductase. (350 aa)    
Predicted Functional Partners:
nuoC
NADH-ubiquinone oxidoreductase chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
   
 0.672
AKV02029.1
NADH-ubiquinone oxidoreductase chain F.
   
 0.636
nuoD
NADH-ubiquinone oxidoreductase chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
   
 0.634
nuoB
NADH-ubiquinone oxidoreductase chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 0.613
AKV02506.1
NADH-ubiquinone oxidoreductase chain G.
   
 0.611
AKV02030.1
NADH-ubiquinone oxidoreductase chain E.
   
 0.604
AKU95813.1
Transcriptional regulator, LysR family; Belongs to the LysR transcriptional regulatory family.
       0.572
AKV03565.1
Ferredoxin.
  
 0.559
AKV00945.1
4Fe-4S ferredoxin, iron-sulfur binding protein.
   
 0.558
nuoI
NADH-ubiquinone oxidoreductase chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 0.558
Your Current Organism:
Labilithrix luteola
NCBI taxonomy Id: 1391654
Other names: DSM 27648, L. luteola, Labilithrix luteola Yamamoto et al. 2014, NBRC 109946, Sorangiineae bacterium B00002, strain B00002
Server load: low (12%) [HD]