STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CR51_33055Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (623 aa)    
Predicted Functional Partners:
CR51_05310
DNA polymerase III subunit epsilon; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
  0.795
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP.
  
 
  0.774
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
    
 0.771
uvrC
Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
    
  0.765
CR51_25485
Initiator RepB protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.763
CR51_27820
Ethanolamine utilization protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.755
CR51_35515
Histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.753
CR51_38630
Polysaccharide biosynthesis protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.746
CR51_08225
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
    
  0.741
uvrA
ABC-ATPase UvrA; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
    
  0.741
Your Current Organism:
Caballeronia megalochromosomata
NCBI taxonomy Id: 1399969
Other names: Burkholderia megalochromosomata, Burkholderia megalochromosomata Baek et al. 2015, Burkholderia sp. JC2949, C. megalochromosomata, Caballeronia megalochromosomata (Baek et al. 2015) Dobritsa and Samadpour 2016, JCM 19905, KACC 17925, strain JC2949
Server load: low (20%) [HD]