STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ETY75501.1PTS fructose transporter subunit IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. (440 aa)    
Predicted Functional Partners:
ETY73449.1
PTS cellobiose transporter subunit IIA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.967
ETY73450.1
PTS sugar transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.899
ETY75703.1
PTS sugar transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.898
ETY75704.1
PTS cellobiose transporter subunit IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane.
  
 
 
0.736
ETY74671.1
Phosphocarrier protein HPr; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.691
ETY74852.1
PTS cellobiose transporter subunit IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane.
  
  
 
0.604
ETY74843.1
PTS cellobiose transporter subunit IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane.
  
  
 
0.600
ETY72970.1
PTS cellobiose transporter subunit IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane.
  
  
 
0.545
ETY72990.1
PTS beta-glucoside transporter subunit IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane.
  
  
 
0.542
celD
PTS cellobiose transporter subunit IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane.
  
  
 
0.541
Your Current Organism:
Lactobacillus fabifermentans
NCBI taxonomy Id: 1400520
Other names: L. fabifermentans T30PCM01, Lactobacillus fabifermentans T30PCM01
Server load: low (24%) [HD]