node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AIY07946.1 | msrA | LK13_04760 | LK13_02945 | NADPH--cytochrome P450 reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Methionine sulfoxide reductase; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine. | 0.420 |
AIY07946.1 | polA | LK13_04760 | LK13_20955 | NADPH--cytochrome P450 reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.920 |
AIY07946.1 | recA | LK13_04760 | LK13_22715 | NADPH--cytochrome P450 reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.512 |
AIY07946.1 | sbcC | LK13_04760 | LK13_04255 | NADPH--cytochrome P450 reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA repair protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.522 |
AIY07946.1 | sbcD | LK13_04760 | LK13_04260 | NADPH--cytochrome P450 reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Nuclease SbcCD subunit D; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SbcD family. | 0.569 |
asnS | polA | LK13_02030 | LK13_20955 | asparagine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.900 |
dnaN1 | mutS | LK13_13025 | LK13_01635 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity. | 0.953 |
dnaN1 | polA | LK13_13025 | LK13_20955 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.986 |
dnaN1 | recA | LK13_13025 | LK13_22715 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.844 |
msrA | AIY07946.1 | LK13_02945 | LK13_04760 | Methionine sulfoxide reductase; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine. | NADPH--cytochrome P450 reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.420 |
msrA | polA | LK13_02945 | LK13_20955 | Methionine sulfoxide reductase; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.887 |
msrA | recA | LK13_02945 | LK13_22715 | Methionine sulfoxide reductase; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine. | Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.451 |
mutM | mutM3 | LK13_20960 | LK13_01375 | 5-hydroxymethyluracil DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. | formamidopyrimidine-DNA glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.924 |
mutM | polA | LK13_20960 | LK13_20955 | 5-hydroxymethyluracil DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.991 |
mutM3 | mutM | LK13_01375 | LK13_20960 | formamidopyrimidine-DNA glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 5-hydroxymethyluracil DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. | 0.924 |
mutM3 | polA | LK13_01375 | LK13_20955 | formamidopyrimidine-DNA glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.968 |
mutS | dnaN1 | LK13_01635 | LK13_13025 | DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity. | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | 0.953 |
mutS | polA | LK13_01635 | LK13_20955 | DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.895 |
mutS | recA | LK13_01635 | LK13_22715 | DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity. | Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.553 |
mutS | sbcD | LK13_01635 | LK13_04260 | DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity. | Nuclease SbcCD subunit D; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SbcD family. | 0.406 |