node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
alsD | alsS | LK13_23110 | LK13_23115 | Alpha-acetolactate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the alpha-acetolactate decarboxylase family. | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | 0.999 |
alsD | ilvB3 | LK13_23110 | LK13_20050 | Alpha-acetolactate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the alpha-acetolactate decarboxylase family. | Acetolactate synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.961 |
alsD | ilvN | LK13_23110 | LK13_20055 | Alpha-acetolactate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the alpha-acetolactate decarboxylase family. | Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.919 |
alsS | alsD | LK13_23115 | LK13_23110 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | Alpha-acetolactate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the alpha-acetolactate decarboxylase family. | 0.999 |
alsS | ilvA | LK13_23115 | LK13_17180 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | 0.965 |
alsS | ilvB3 | LK13_23115 | LK13_20050 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | Acetolactate synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.923 |
alsS | ilvC | LK13_23115 | LK13_20060 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | 0.977 |
alsS | ilvN | LK13_23115 | LK13_20055 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.996 |
alsS | leuA | LK13_23115 | LK13_00810 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. | 0.864 |
alsS | leuB | LK13_23115 | LK13_20070 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. | 0.945 |
alsS | porA | LK13_23115 | LK13_02485 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | Pyruvate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.947 |
alsS | porG | LK13_23115 | LK13_02490 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | Ferredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.917 |
alsS | tdcE | LK13_23115 | LK13_02860 | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | Formate acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.911 |
ilvA | alsS | LK13_17180 | LK13_23115 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | Catalyzes the formation of 2-acetolactate from pyruvate in stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. | 0.965 |
ilvA | ilvB3 | LK13_17180 | LK13_20050 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | Acetolactate synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.986 |
ilvA | ilvC | LK13_17180 | LK13_20060 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | 0.766 |
ilvA | ilvN | LK13_17180 | LK13_20055 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.992 |
ilvA | leuB | LK13_17180 | LK13_20070 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. | 0.955 |
ilvA | porA | LK13_17180 | LK13_02485 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | Pyruvate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.897 |
ilvA | porG | LK13_17180 | LK13_02490 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | Ferredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.855 |