STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
enoPhosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (429 aa)    
Predicted Functional Partners:
gpmI
Phosphoglycerate mutase (2,3-diphosphoglycerate-independent); Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate.
 
 0.988
pgk
Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family.
 
 
 0.978
pgi
Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
  
 0.972
AMW78699.1
Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis.
  
 0.970
tpiA
Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
 
 
 0.952
AMW79072.1
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
  
 0.949
AMW79247.1
Erythrose-4-phosphate dehydrogenase; NAD-dependent; catalyzes the formation of 4-phosphoerythronate from erythrose 4-phosphate in the biosynthesis of pyridoxine 5'-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
 
 
 0.943
ppc
Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family.
  
 
 0.934
AMW78593.1
Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family.
    
 0.927
pckG
Phosphoenolpyruvate carboxykinase; Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle; Belongs to the phosphoenolpyruvate carboxykinase [GTP] family.
     
 0.922
Your Current Organism:
Acinetobacter sp. TGLY2
NCBI taxonomy Id: 1407071
Other names: A. sp. TGL-Y2, Acinetobacter sp. TGL-Y2
Server load: low (18%) [HD]