STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KXG44381.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (93 aa)    
Predicted Functional Partners:
KXG44712.1
Phosphoenolpyruvate--protein phosphotransferase; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).
 
 0.983
KXG43102.1
PTS fructose transporter subunit IIBC; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.944
KXG42697.1
PTS beta-glucoside transporter subunit EIIBCA; Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.922
KXG44714.1
PTS glucose transporter subunit IICBA; Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.922
KXG44264.1
PTS sugar transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.785
hprK
Serine kinase; Catalyzes the ATP- as well as the pyrophosphate-dependent phosphorylation of a specific serine residue in HPr, a phosphocarrier protein of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS). HprK/P also catalyzes the pyrophosphate-producing, inorganic phosphate-dependent dephosphorylation (phosphorolysis) of seryl-phosphorylated HPr (P-Ser-HPr). The two antagonistic activities of HprK/P are regulated by several intracellular metabolites, which change their concentration in response to the absence or presence of rapidly metabolisable carbon sources (g [...]
 
 
 
 0.776
KXG44728.1
Trehalose permease IIC protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.774
whiA
Sporulation regulator WhiA; Involved in cell division and chromosome segregation.
  
  
 0.766
KXG43101.1
PTS fructose transporter subunit IIA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.719
KXG44383.1
Hypothetical protein; Required for morphogenesis under gluconeogenic growth conditions; Belongs to the gluconeogenesis factor family.
  
  
 0.633
Your Current Organism:
Tepidibacillus decaturensis
NCBI taxonomy Id: 1413211
Other names: ATCC BAA-2644, DSM 103037, T. decaturensis, Tepidibacillus decaturensis Dong et al. 2016, Tepidibacillus sp. Z9, Tepidibacillus sp. Z9_1, Tepidibacillus sp. Z9_2, strain Z9
Server load: low (14%) [HD]