node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OQK18090.1 | OQK18091.1 | AU255_09655 | AU255_09660 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | 0.983 |
OQK18090.1 | OQK18761.1 | AU255_09655 | AU255_11100 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | 0.901 |
OQK18090.1 | OQK18762.1 | AU255_09655 | AU255_11105 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.901 |
OQK18090.1 | clpP | AU255_09655 | AU255_05315 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.538 |
OQK18090.1 | clpP-2 | AU255_09655 | AU255_12565 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.538 |
OQK18090.1 | dnaJ | AU255_09655 | AU255_07155 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.780 |
OQK18090.1 | dnaK | AU255_09655 | AU255_07150 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.904 |
OQK18090.1 | groEL | AU255_09655 | AU255_18620 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.926 |
OQK18090.1 | hrcA | AU255_09655 | AU255_07140 | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | HrcA family transcriptional regulator; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.831 |
OQK18091.1 | OQK18090.1 | AU255_09660 | AU255_09655 | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.983 |
OQK18091.1 | clpP | AU255_09660 | AU255_05315 | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.441 |
OQK18091.1 | clpP-2 | AU255_09660 | AU255_12565 | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.441 |
OQK18091.1 | dnaJ | AU255_09660 | AU255_07155 | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.990 |
OQK18091.1 | dnaK | AU255_09660 | AU255_07150 | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.856 |
OQK18091.1 | groEL | AU255_09660 | AU255_18620 | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.892 |
OQK18091.1 | grpE | AU255_09660 | AU255_07145 | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.974 |
OQK18091.1 | hrcA | AU255_09660 | AU255_07140 | Heat-shock protein Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | HrcA family transcriptional regulator; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.754 |
OQK18761.1 | OQK18090.1 | AU255_11100 | AU255_09655 | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.901 |
OQK18761.1 | OQK18762.1 | AU255_11100 | AU255_11105 | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.692 |
OQK18761.1 | clpP | AU255_11100 | AU255_05315 | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.452 |