STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OQK18483.1L-aspartate oxidase; Catalyzes the oxidation of L-aspartate to iminoaspartate. (534 aa)    
Predicted Functional Partners:
nadA
Quinolinate synthetase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate.
 0.999
OQK17994.1
Nicotinate-nucleotide pyrophosphorylase; Catalyzes the formation of pyridine-2,3-dicarboxylate and 5-phospho-alpha-D-ribose 1-diphosphate from nictinate D-ribonucleotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadC/ModD family.
  
 0.997
OQK18655.1
Pyruvate ferredoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.886
OQK17799.1
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.872
panD
Aspartate decarboxylase; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine.
    
 0.858
purA
Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
     
 0.855
argG
Argininosuccinate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily.
     
 0.849
mdh
Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family.
    
 0.846
OQK17531.1
Aspartate aminotransferase; Catalyzes the formation of oxalozcetate and L-glutamate from L-aspartate and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.843
sucA
SucA; E1 component of the oxoglutarate dehydrogenase complex which catalyzes the formation of succinyl-CoA from 2-oxoglutarate; SucA catalyzes the reaction of 2-oxoglutarate with dihydrolipoamide succinyltransferase-lipoate to form dihydrolipoamide succinyltransferase-succinyldihydrolipoate and carbon dioxide; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   
 0.829
Your Current Organism:
Methyloprofundus sedimenti
NCBI taxonomy Id: 1420851
Other names: ATCC BAA-2619, LMG 28393, LMG:28393, M. sedimenti, Methylococcaceae bacterium WF1, Methyloprofundus sedimenti Tavormina et al. 2015, strain WF1
Server load: low (16%) [HD]