STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gltA-3Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (429 aa)    
Predicted Functional Partners:
OQK16368.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.922
OQK18655.1
Pyruvate ferredoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.918
OQK17799.1
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.913
OQK17164.1
GltA; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.889
OQK18468.1
3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.886
mdh
Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family.
  
 0.884
sucC
succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
  
 0.873
sucC-2
succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
  
 0.873
OQK17675.1
Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family.
  
 0.858
OQK18308.1
Aconitate hydratase B; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family.
  
 
 0.856
Your Current Organism:
Methyloprofundus sedimenti
NCBI taxonomy Id: 1420851
Other names: ATCC BAA-2619, LMG 28393, LMG:28393, M. sedimenti, Methylococcaceae bacterium WF1, Methyloprofundus sedimenti Tavormina et al. 2015, strain WF1
Server load: low (18%) [HD]