node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
gid | hslU | A2J09_01335 | A2J09_01350 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.655 |
gid | hslV | A2J09_01335 | A2J09_01345 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.652 |
gid | queA | A2J09_01335 | A2J09_12080 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | tRNA preQ1(34) S-adenosylmethionine ribosyltransferase-isomerase QueA; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). | 0.794 |
gid | smf | A2J09_01335 | A2J09_01325 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | DNA processing protein DprA; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.600 |
gid | topA | A2J09_01335 | A2J09_01330 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] | 0.911 |
gid | trmD | A2J09_01335 | A2J09_01280 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | tRNA (guanosine(37)-N1)-methyltransferase TrmD; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. | 0.590 |
gid | udk_2 | A2J09_01335 | A2J09_11760 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | Uridine kinase; Functions in pyrimidine salvage; pyrimidine ribonucleoside kinase; phosphorylates nucleosides or dinucleosides to make UMP or CMP using ATP or GTP as the donor; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.611 |
gid | uppS | A2J09_01335 | A2J09_01555 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | Isoprenyl transferase; Catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic pyrophosphates generating different type of terpenoids. | 0.667 |
gid | xerC_4 | A2J09_01335 | A2J09_01340 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | Tyrosine recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.579 |
gid | yhbU_2 | A2J09_01335 | A2J09_11765 | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | Protease; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.610 |
hslU | gid | A2J09_01350 | A2J09_01335 | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | 0.655 |
hslU | hslV | A2J09_01350 | A2J09_01345 | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.999 |
hslU | smf | A2J09_01350 | A2J09_01325 | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | DNA processing protein DprA; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.419 |
hslU | topA | A2J09_01350 | A2J09_01330 | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] | 0.607 |
hslU | xerC_4 | A2J09_01350 | A2J09_01340 | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | Tyrosine recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.814 |
hslV | gid | A2J09_01345 | A2J09_01335 | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | methylenetetrahydrofolate--tRNA-(uracil(54)- C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. | 0.652 |
hslV | hslU | A2J09_01345 | A2J09_01350 | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.999 |
hslV | smf | A2J09_01345 | A2J09_01325 | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | DNA processing protein DprA; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.513 |
hslV | topA | A2J09_01345 | A2J09_01330 | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] | 0.594 |
hslV | xerC_4 | A2J09_01345 | A2J09_01340 | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | Tyrosine recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. | 0.850 |