node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
DnaJ | clpC | A2J09_10585 | A2J09_18235 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | 0.824 |
DnaJ | clpP_1 | A2J09_10585 | A2J09_14785 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.511 |
DnaJ | dnaK | A2J09_10585 | A2J09_11485 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.993 |
DnaJ | groEL | A2J09_10585 | A2J09_16345 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.868 |
DnaJ | groES | A2J09_10585 | A2J09_16350 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.780 |
DnaJ | grpE | A2J09_10585 | A2J09_11490 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...] | 0.969 |
DnaJ | hslU | A2J09_10585 | A2J09_01350 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.704 |
DnaJ | hslV | A2J09_10585 | A2J09_01345 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.581 |
clpC | DnaJ | A2J09_18235 | A2J09_10585 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.824 |
clpC | clpP_1 | A2J09_18235 | A2J09_14785 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.937 |
clpC | dnaJ | A2J09_18235 | A2J09_11480 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.855 |
clpC | dnaK | A2J09_18235 | A2J09_11485 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.924 |
clpC | groEL | A2J09_18235 | A2J09_16345 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.775 |
clpC | groES | A2J09_18235 | A2J09_16350 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.805 |
clpC | grpE | A2J09_18235 | A2J09_11490 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...] | 0.925 |
clpC | hslU | A2J09_18235 | A2J09_01350 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.724 |
clpC | hslV | A2J09_18235 | A2J09_01345 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.634 |
clpC | rplL | A2J09_18235 | A2J09_18150 | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | 50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. | 0.446 |
clpP_1 | DnaJ | A2J09_14785 | A2J09_10585 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.511 |
clpP_1 | clpC | A2J09_14785 | A2J09_18235 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | 0.937 |