STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
disADNA integrity scanning protein DisA; Has also diadenylate cyclase activity, catalyzing the condensation of 2 ATP molecules into cyclic di-AMP (c-di-AMP). c-di-AMP acts as a signaling molecule that couples DNA integrity with progression of sporulation. The rise in c-di-AMP level generated by DisA while scanning the chromosome, operates as a positive signal that advances sporulation; upon encountering a lesion, the DisA focus arrests at the damaged site and halts c-di-AMP synthesis. (360 aa)    
Predicted Functional Partners:
radA
DNA repair protein RadA; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function.
  
  
 0.956
AMA50814.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.765
ispD
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D- erythritol from CTP and 2-C-methyl-D-erythritol 4-phosphate (MEP).
  
    0.721
AMA50809.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.706
mcsB
ATP--guanido phosphotransferase; Catalyzes the specific phosphorylation of arginine residues in a large number of proteins. Is part of the bacterial stress response system. Protein arginine phosphorylation has a physiologically important role and is involved in the regulation of many critical cellular processes, such as protein homeostasis, motility, competence, and stringent and stress responses, by regulating gene expression and protein activity.
  
    0.699
AMA50811.1
ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family.
  
    0.641
AMA50808.1
CtsR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CtsR family.
  
  
 0.626
ispF
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; Involved in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), two major building blocks of isoprenoid compounds. Catalyzes the conversion of 4-diphosphocytidyl-2- C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP).
  
    0.576
AMA54633.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.518
AMA52812.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
  
 0.483
Your Current Organism:
Bacillus subtilis inaquosorum
NCBI taxonomy Id: 483913
Other names: B. subtilis subsp. inaquosorum, BGSC 3A28, Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. inaquosorum Rooney et al. 2009, DSM 22148, KCTC 13429, NRRL B-23052
Server load: low (14%) [HD]