node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KRK94814.1 | dnaJ | FD25_GL000790 | FD25_GL000680 | Cysteine sulfinate desulfinase cysteine desulfurase. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.486 |
KRK94814.1 | dnaK | FD25_GL000790 | FD25_GL000681 | Cysteine sulfinate desulfinase cysteine desulfurase. | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.707 |
KRK94814.1 | hslU | FD25_GL000790 | FD25_GL000583 | Cysteine sulfinate desulfinase cysteine desulfurase. | ATP-dependent protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.628 |
dnaJ | KRK94814.1 | FD25_GL000680 | FD25_GL000790 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Cysteine sulfinate desulfinase cysteine desulfurase. | 0.486 |
dnaJ | dnaK | FD25_GL000680 | FD25_GL000681 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.999 |
dnaJ | groL | FD25_GL000680 | FD25_GL001930 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.949 |
dnaJ | groS | FD25_GL000680 | FD25_GL001931 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Co-chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.909 |
dnaJ | grpE | FD25_GL000680 | FD25_GL000682 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Molecular chaperone GrpE (heat shock protein); Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. [...] | 0.998 |
dnaJ | hslO | FD25_GL000680 | FD25_GL000946 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Hsp33-like chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.658 |
dnaJ | hslU | FD25_GL000680 | FD25_GL000583 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | ATP-dependent protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.709 |
dnaJ | hslV | FD25_GL000680 | FD25_GL000584 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | ATP-dependent protease peptidase subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.634 |
dnaJ | topA | FD25_GL000680 | FD25_GL000586 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] | 0.488 |
dnaK | KRK94814.1 | FD25_GL000681 | FD25_GL000790 | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Cysteine sulfinate desulfinase cysteine desulfurase. | 0.707 |
dnaK | dnaJ | FD25_GL000681 | FD25_GL000680 | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.999 |
dnaK | groL | FD25_GL000681 | FD25_GL001930 | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.995 |
dnaK | groS | FD25_GL000681 | FD25_GL001931 | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Co-chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.985 |
dnaK | grpE | FD25_GL000681 | FD25_GL000682 | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Molecular chaperone GrpE (heat shock protein); Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. [...] | 0.999 |
dnaK | hslO | FD25_GL000681 | FD25_GL000946 | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Hsp33-like chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.610 |
dnaK | hslU | FD25_GL000681 | FD25_GL000583 | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | ATP-dependent protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.643 |
dnaK | hslV | FD25_GL000681 | FD25_GL000584 | Molecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. | ATP-dependent protease peptidase subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.605 |