STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KRM20967.1dTDP-4-dehydrorhamnose reductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose. (280 aa)    
Predicted Functional Partners:
KRM20962.1
dTDP-4-dehydrorhamnose 3,5-epimerase; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family.
 
 0.999
KRM20963.1
dTDP-glucose 4,6-dehydratase; Belongs to the NAD(P)-dependent epimerase/dehydratase family. dTDP-glucose dehydratase subfamily.
 
 0.974
KRM20960.1
Glucose-1-phosphate thymidylyltransferase; Catalyzes the formation of dTDP-glucose, from dTTP and glucose 1-phosphate, as well as its pyrophosphorolysis. Belongs to the glucose-1-phosphate thymidylyltransferase family.
 
 0.973
rpsL
rpsL protein; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
   
 0.932
rpsN
Alternate 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family.
   
  0.931
rpsQ
rpsQ protein; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA.
   
  0.929
rpsJ
Ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family.
   
  0.928
rpsM
30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family.
   
  0.926
rpsE
Ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family.
   
  0.926
rpsC
Ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family.
   
  0.924
Your Current Organism:
Lactobacillus graminis
NCBI taxonomy Id: 1423752
Other names: L. graminis DSM 20719, Lactobacillus graminis DSM 20719
Server load: low (24%) [HD]