STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glmSGlucosamine--fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. (610 aa)    
Predicted Functional Partners:
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family.
 
 0.997
KRL55179.1
N-acetylglucosamine PTS, EIICBA.
    
 0.988
KRL55927.1
Glutamine synthetase.
 
 
 0.977
nagB
Glucosamine-6-phosphate isomerase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion.
  
 
 0.974
pgi
Glucose-6-phosphate isomerase; Belongs to the GPI family.
  
 
 0.972
glmU
Glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain.
  
 0.958
KRL57760.1
N-acetylglucosamine-6-phosphate deacetylase.
    
 0.949
purQ
Phosphoribosylformylglycinamidine synthase domain-containing protein; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL an [...]
    
 0.946
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family.
    
0.943
KRL56068.1
Phosphomannose isomerase; Belongs to the mannose-6-phosphate isomerase type 1 family.
    
 0.941
Your Current Organism:
Lactobacillus oligofermentans
NCBI taxonomy Id: 1423778
Other names: L. oligofermentans DSM 15707 = LMG 22743, Lactobacillus oligofermentans AMKR18, Lactobacillus oligofermentans DSM 15707, Lactobacillus oligofermentans DSM 15707 = LMG 22743, Lactobacillus oligofermentans LMG 22743, Lactobacillus oligofermentans LMG 22743 = DSM 15707
Server load: low (24%) [HD]