STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greA-2Transcription elongation factor greA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (158 aa)    
Predicted Functional Partners:
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.969
rpoZ
Hypothetical protein; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 
 
 0.918
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.913
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.894
pheT
phenylalanyl-tRNA synthetase subunit beta; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
 
  
 0.693
mltG
Hypothetical protein; Functions as a peptidoglycan terminase that cleaves nascent peptidoglycan strands endolytically to terminate their elongation. Belongs to the transglycosylase MltG family.
     
 0.692
pheS
phenylalanyl-tRNA synthetase subunit alpha; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily.
 
     0.671
KRK83706.1
Hypothetical protein.
       0.666
KRK83243.1
GTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance.
  
 
 0.621
prmA
Ribosomal protein L11 methyltransferase; Methylates ribosomal protein L11; Belongs to the methyltransferase superfamily. PrmA family.
  
 
  0.604
Your Current Organism:
Lactobacillus paralimentarius
NCBI taxonomy Id: 1423788
Other names: L. paralimentarius DSM 19674, Lactobacillus paralimentarius DSM 19674
Server load: low (22%) [HD]