STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KRM93293.1ATPase AAA-2 domain-containing protein; Belongs to the ClpA/ClpB family. (686 aa)    
Predicted Functional Partners:
dnaK
Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.923
clpP
ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
  
 
 0.918
KRM94101.1
Adapter protein mecA; Enables the recognition and targeting of unfolded and aggregated proteins to the ClpC protease or to other proteins involved in proteolysis; Belongs to the MecA family.
    
 
 0.794
dnaJ
Chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK and [...]
  
 
 0.740
grpE
Co-chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depend [...]
  
 
 0.686
groS
Hypothetical protein; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
  
 
 0.651
KRM93348.1
Hypothetical protein; Belongs to the small heat shock protein (HSP20) family.
  
 
 0.616
groL
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
  
 
 0.585
hrcA
Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
 
  
 0.548
KRM93165.1
Transcriptional regulator CtsR; Belongs to the CtsR family.
  
  
 0.544
Your Current Organism:
Lactobacillus senioris
NCBI taxonomy Id: 1423802
Other names: L. senioris DSM 24302 = JCM 17472, Lactobacillus senioris DSM 24302, Lactobacillus senioris DSM 24302 = JCM 17472, Lactobacillus senioris JCM 17472, Lactobacillus senioris JCM 17472 = DSM 24302, Lactobacillus senioris YIT 12364, Lactobacillus sp. YIT 12364
Server load: low (24%) [HD]