STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KRL37976.1Ca2+-transporting ATPase. (882 aa)    
Predicted Functional Partners:
atpD
F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
   
 0.814
atpH
ATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
  0.798
atpA
F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
   
 
 0.788
atpE
Hypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
 
 0.780
ppaC
Manganese-dependent inorganic pyrophosphatase.
    
  0.779
atpG
F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
   
 
  0.777
mscL
Large-conductance mechanosensitive channel; Channel that opens in response to stretch forces in the membrane lipid bilayer. May participate in the regulation of osmotic pressure changes within the cell.
       0.505
KRL36661.1
MgtC SapB transporter.
  
 
 0.460
KRL38539.1
Hypothetical protein.
  
 
 0.460
KRL38431.1
Pyruvate kinase; Belongs to the pyruvate kinase family.
  
 
 0.414
Your Current Organism:
Lactobacillus uvarum
NCBI taxonomy Id: 1423812
Other names: L. uvarum DSM 19971, Lactobacillus sp. 8, Lactobacillus uvarum DSM 19971
Server load: low (14%) [HD]