STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALF09133.1Quinol oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (648 aa)    
Predicted Functional Partners:
ALF09134.1
Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
ctaC
Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 0.997
ALF09132.1
Quinol oxidase subunit 2; Catalyzes quinol oxidation with the concomitant reduction of oxygen to water. Subunit II transfers the electrons from a quinol to the binuclear center of the catalytic subunit I.
 
 0.996
ctaE
Cytochrome B oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.995
ALF09135.1
Quinol oxidase subunit 4; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.987
ctaB
Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group; Belongs to the UbiA prenyltransferase family. Protoheme IX farnesyltransferase subfamily.
 
 
 0.948
ALF09234.1
NADH:ubiquinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.941
nuoH
NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
  
 
 0.919
cbaB
Cytochrome B5; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.911
qcrB
Cytochrome b6; Electron transport protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.895
Your Current Organism:
Parageobacillus thermoglucosidasius
NCBI taxonomy Id: 1426
Other names: ATCC 43742, BGSC 95A1, Bacillus sp. BGSC W9A92, Bacillus thermoglucosidasius, CCUG 28887, CIP 106930, DSM 2542, Geobacillus thermoglucosidans, Geobacillus thermoglucosidasius, LMG 7137, LMG:7137, NBRC 107763, NCIMB 11955, NRRL B-14516, P. thermoglucosidasius, Parageobacillus thermoglucosidans, strain R-35637
Server load: low (24%) [HD]