STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OSB_20010Preprotein translocase subunit SecD. (262 aa)    
Predicted Functional Partners:
secF
Bifunctional preprotein translocase subunit SecD/SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA; Belongs to the SecD/SecF family. SecD subfamily.
 
0.999
yajC
Preprotein translocase subunit YajC; The SecYEG-SecDF-YajC-YidC holo-translocon (HTL) protein secretase/insertase is a supercomplex required for protein secretion, insertion of proteins into membranes, and assembly of membrane protein complexes. While the SecYEG complex is essential for assembly of a number of proteins and complexes, the SecDF-YajC-YidC subcomplex facilitates these functions.
  
  
 0.954
yidC
Membrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins.
  
 
 0.953
secY
Preprotein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently.
  
 
 0.903
OSB_10280
Preprotein translocase subunit SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family.
   
 
 0.854
pheT
Phenylalanine--tRNA ligase beta subunit; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
  
 
 0.842
secE
Preprotein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation.
  
 
 0.841
alaS_2
Alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain.
  
    0.710
OSB_19990
Hypothetical protein.
       0.701
ccmB
Heme exporter protein B; Required for the export of heme to the periplasm for the biogenesis of c-type cytochromes; Belongs to the CcmB/CycW/HelB family.
       0.680
Your Current Organism:
Octadecabacter temperatus
NCBI taxonomy Id: 1458307
Other names: DSM 26878, LMG 27946, LMG:27946, O. temperatus, Octadecabacter sp. SB1, Octadecabacter temperatus Billerbeck et al. 2015, strain SB1
Server load: low (22%) [HD]