STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KON85487.1Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (308 aa)    
Predicted Functional Partners:
KON85833.1
Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.992
KON85486.1
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.982
KON88426.1
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.964
KON88424.1
Homocysteine methyltransferase; Catalyzes the formation of 5,10-methylenetetrahydrofolate from 5-methyltetrahydrofolate and S-adenosyl-L-homocysteine and methionine from S-adenosyl-L-methionine and L-homocysteine; expressed in B. subtilis under methionine starvation conditions; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.950
luxS
S-ribosylhomocysteinase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family.
 
 
 0.944
KON86445.1
O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.918
KON88425.1
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.918
KON86518.1
Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.917
KON85488.1
SAM-dependent methyltransferase; Could be a S-adenosyl-L-methionine-dependent methyltransferase.
 
 0.911
cysS
cysteinyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family.
  
 0.909
Your Current Organism:
Sporosarcina globispora
NCBI taxonomy Id: 1459
Other names: ATCC 23301, Bacillus globisporus, CCM 2119, CCUG 7419, CIP 103266, DSM 4, HAMBI 471, IFO 16082, JCM 10046, LMG 6928, LMG:6928, NBRC 16082, NCIMB 11434, NRRL B-3396, S. globispora, strain 785, strain W 25, strain W25
Server load: low (16%) [HD]