node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KCV81674.1 | lexA | ATO10_10025 | ATO10_01595 | Hypothetical protein; COG0389 Nucleotidyltransferase/DNA polymerase involved in DNA repair. | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.727 |
KCV81674.1 | recA | ATO10_10025 | ATO10_03465 | Hypothetical protein; COG0389 Nucleotidyltransferase/DNA polymerase involved in DNA repair. | Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.776 |
KCV82287.1 | lexA | ATO10_07852 | ATO10_01595 | COG0863 DNA modification methylase; Belongs to the N(4)/N(6)-methyltransferase family. | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.923 |
KCV83118.1 | dinB | ATO10_00115 | ATO10_07116 | DNA repair protein RecN; May be involved in recombinational repair of damaged DNA. | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | 0.575 |
KCV83118.1 | lexA | ATO10_00115 | ATO10_01595 | DNA repair protein RecN; May be involved in recombinational repair of damaged DNA. | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.870 |
KCV83118.1 | recA | ATO10_00115 | ATO10_03465 | DNA repair protein RecN; May be involved in recombinational repair of damaged DNA. | Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.895 |
KCV83419.1 | lexA | ATO10_01620 | ATO10_01595 | COG0512 Anthranilate/para-aminobenzoate synthases component II. | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.716 |
KCV83419.1 | moaC | ATO10_01620 | ATO10_01605 | COG0512 Anthranilate/para-aminobenzoate synthases component II. | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | 0.866 |
KCV83419.1 | trpC | ATO10_01620 | ATO10_01610 | COG0512 Anthranilate/para-aminobenzoate synthases component II. | COG0134 Indole-3-glycerol phosphate synthase; Belongs to the TrpC family. | 0.999 |
KCV83419.1 | trpD | ATO10_01620 | ATO10_01615 | COG0512 Anthranilate/para-aminobenzoate synthases component II. | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). | 0.999 |
dinB | KCV83118.1 | ATO10_07116 | ATO10_00115 | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | DNA repair protein RecN; May be involved in recombinational repair of damaged DNA. | 0.575 |
dinB | lexA | ATO10_07116 | ATO10_01595 | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.934 |
dinB | recA | ATO10_07116 | ATO10_03465 | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.833 |
lexA | KCV81674.1 | ATO10_01595 | ATO10_10025 | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | Hypothetical protein; COG0389 Nucleotidyltransferase/DNA polymerase involved in DNA repair. | 0.727 |
lexA | KCV82287.1 | ATO10_01595 | ATO10_07852 | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | COG0863 DNA modification methylase; Belongs to the N(4)/N(6)-methyltransferase family. | 0.923 |
lexA | KCV83118.1 | ATO10_01595 | ATO10_00115 | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | DNA repair protein RecN; May be involved in recombinational repair of damaged DNA. | 0.870 |
lexA | KCV83419.1 | ATO10_01595 | ATO10_01620 | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | COG0512 Anthranilate/para-aminobenzoate synthases component II. | 0.716 |
lexA | dinB | ATO10_01595 | ATO10_07116 | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | 0.934 |
lexA | moaC | ATO10_01595 | ATO10_01605 | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | 0.761 |
lexA | recA | ATO10_01595 | ATO10_03465 | LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.995 |