STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMO66799.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (249 aa)    
Predicted Functional Partners:
AMO66800.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
  
 0.987
AMO66801.1
Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.986
cyoE
Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group.
 
 
 0.959
AMO66796.1
Cytochrome C oxidase assembly protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.955
AMO66794.1
Cytochrome B559 subunit alpha; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 
 
 0.902
AMO66803.1
Electron transporter SenC; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.848
AMO66797.1
MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.803
AMO66795.1
Cytochrome oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
 
 
 0.714
AMO69466.1
Ubiquinol-cytochrome C reductase; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
 
 
 
 0.675
AMO66798.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.654
Your Current Organism:
Zhongshania aliphaticivorans
NCBI taxonomy Id: 1470434
Other names: JCM 30138, KACC 18120, Spongiibacter sp. SM-2, Z. aliphaticivorans, Zhongshania aliphaticivorans Lo et al. 2014, strain SM-2, strain SM2
Server load: low (16%) [HD]