STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMO67330.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (619 aa)    
Predicted Functional Partners:
AMO67331.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
   
 0.951
AMO67332.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.779
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
 
 
 0.721
AMO68856.1
ATP-dependent DNA helicase RecQ; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.720
recA
DNA recombination/repair protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 
 0.711
AMO67972.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
  
 0.666
AMO70211.1
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
  
 
 0.641
topA
DNA topoisomerase I subunit omega; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus rem [...]
  
 
 0.607
AMO67333.1
DNA cytosine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.539
AMO67334.1
Very short patch repair endonuclease; May nick specific sequences that contain T:G mispairs resulting from m5C-deamination.
     
 0.517
Your Current Organism:
Zhongshania aliphaticivorans
NCBI taxonomy Id: 1470434
Other names: JCM 30138, KACC 18120, Spongiibacter sp. SM-2, Z. aliphaticivorans, Zhongshania aliphaticivorans Lo et al. 2014, strain SM-2, strain SM2
Server load: low (26%) [HD]