STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMO67685.1acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (446 aa)    
Predicted Functional Partners:
AMO67686.1
acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
 
 0.999
AMO68920.1
Pyruvate carboxylase subunit B; Catalyzes the formation of oxaloacetate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.998
accD
acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family.
 0.995
accA
acetyl-CoA carboxylase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA.
 
 0.993
AMO68879.1
Dihydrolipoamide acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
  
 0.992
AMO68527.1
Malonyl CoA-ACP transacylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.966
AMO68272.1
acetyl-CoA carboxylase carboxyltransferase subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.958
AMO69279.1
Urea carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
0.951
fabH
3-oxoacyl-ACP synthase; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Its substrate specificity determines the biosynthesis of branched-chain and/or straight-chain of fatty acids; Belongs to the thiolase-like superfamily. FabH family.
 
 
 0.946
birA
Repressor; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon.
 
 0.945
Your Current Organism:
Zhongshania aliphaticivorans
NCBI taxonomy Id: 1470434
Other names: JCM 30138, KACC 18120, Spongiibacter sp. SM-2, Z. aliphaticivorans, Zhongshania aliphaticivorans Lo et al. 2014, strain SM-2, strain SM2
Server load: low (12%) [HD]