node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AQS55371.1 | AQS57417.1 | B0W44_05805 | B0W44_05800 | Phosphoenolpyruvate synthase regulatory protein; Bifunctional serine/threonine kinase and phosphorylase involved in the regulation of the pyruvate, phosphate dikinase (PPDK) by catalyzing its phosphorylation/dephosphorylation. | Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.954 |
AQS55371.1 | glyQ | B0W44_05805 | B0W44_05790 | Phosphoenolpyruvate synthase regulatory protein; Bifunctional serine/threonine kinase and phosphorylase involved in the regulation of the pyruvate, phosphate dikinase (PPDK) by catalyzing its phosphorylation/dephosphorylation. | glycine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.576 |
AQS55371.1 | glyS | B0W44_05805 | B0W44_05795 | Phosphoenolpyruvate synthase regulatory protein; Bifunctional serine/threonine kinase and phosphorylase involved in the regulation of the pyruvate, phosphate dikinase (PPDK) by catalyzing its phosphorylation/dephosphorylation. | glycine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.710 |
AQS57417.1 | AQS55371.1 | B0W44_05800 | B0W44_05805 | Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | Phosphoenolpyruvate synthase regulatory protein; Bifunctional serine/threonine kinase and phosphorylase involved in the regulation of the pyruvate, phosphate dikinase (PPDK) by catalyzing its phosphorylation/dephosphorylation. | 0.954 |
AQS57417.1 | glyQ | B0W44_05800 | B0W44_05790 | Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | glycine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.668 |
AQS57417.1 | glyS | B0W44_05800 | B0W44_05795 | Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | glycine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.632 |
aspS | glyQ | B0W44_05030 | B0W44_05790 | histidine--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | glycine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.634 |
aspS | glyS | B0W44_05030 | B0W44_05795 | histidine--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | glycine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.699 |
aspS | ileS | B0W44_05030 | B0W44_06765 | histidine--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | 0.707 |
aspS | leuS | B0W44_05030 | B0W44_05485 | histidine--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | leucine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. | 0.739 |
aspS | proS | B0W44_05030 | B0W44_01955 | histidine--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). | 0.721 |
aspS | thrS | B0W44_05030 | B0W44_03030 | histidine--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | threonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). | 0.614 |
aspS | valS | B0W44_05030 | B0W44_04705 | histidine--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. | valine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. | 0.848 |
fusA | glyS | B0W44_00665 | B0W44_05795 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | glycine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.603 |
fusA | ileS | B0W44_00665 | B0W44_06765 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | 0.481 |
fusA | leuS | B0W44_00665 | B0W44_05485 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | leucine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. | 0.777 |
fusA | thrS | B0W44_00665 | B0W44_03030 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | threonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). | 0.700 |
fusA | valS | B0W44_00665 | B0W44_04705 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | valine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. | 0.483 |
glyQ | AQS55371.1 | B0W44_05790 | B0W44_05805 | glycine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. | Phosphoenolpyruvate synthase regulatory protein; Bifunctional serine/threonine kinase and phosphorylase involved in the regulation of the pyruvate, phosphate dikinase (PPDK) by catalyzing its phosphorylation/dephosphorylation. | 0.576 |
glyQ | AQS57417.1 | B0W44_05790 | B0W44_05800 | glycine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. | Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.668 |